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Discussion & Conclusions

 q-Space deep learning for global (scan-wise) prediction yields good 
results

 No handcrafted representations (such as DTI or NODDI)

 Diagnosis directly from raw q-space measurements, data-driven

 ConvNet with large receptive field uses macrostructural features (image
space, ventricles) more than microstructural features (q-space in brain
voxels) for Alzheimer’s disease classification

 Open question: study q-space information – small (e.g. minimal [1]) 
receptive field combined with scan-wise labels
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Context
Diffusion MRI Processing Methods

Handcrafted Representations

Examples: DTI, DKI, NODDI, …

 information loss

 requires disease-specific preliminary studies

 response to unseen microstructural changes unknown

No Handcrafted Representations

Direct estimation of tissue properties from raw 
q-space signal

+no information loss [1,2]

+very short scans

Fitting
(currently used almost 

everywhere)

 unstable

 simplistic
models [6]

 long scans

No Fitting

Fitting replaced by deep 
learning [1,2] or closed-
form formulas [7,8]

+ very short scans

+ stable [1,2]

No Disease Labels

Detection of any 
deviations [3,4,5] from a 
reference (healthy) 
database

+ prior knowledge not 
required

+ abnormal data
not required

Disease Labels

Deep learning to 
estimate tissue type 
directly [1,2]

+ optimal

 requires disease-
specific labels

Weakly-Supervised Learning Methods
 One label for every scan, one prediction for every voxel

Global supervised learning:

 One label for every scan, one prediction for every scan

Local supervised learning:

 One label for every voxel, one prediction for every voxel

 Global label: Alzheimer’s disease

 Local prediction: which areas of given image influence classifier the 
most

Class Activation Mapping (CAM) [12,13]

 ConvNets (illustration: 2D) often have a global pooling layer

 Train with global pooling (→ global prediction)

 Test without global pooling (→ local prediction)

 Fully-connected layers (if any) can be considered as 1×1 
convolutional layers

 Result: local prediction of a network that was trained for global 
prediction

 Fewer fully-connected layers → more well-founded

Guided Backpropagation [14]

 Which voxel intensities should be changed how to strongly 
influence the prediction

Global
pooling

Fully-connected layer
(1×1 conv layer)

1×1 conv layer

Overfitting of Patches → Data Augmentation 2

 Few scans, many voxels → danger of overfitting irrelevant image patterns

 Random elastic spatial deformations → more variablility of irrelevant patterns, less 
overfitting

Random and interpolated deformation vectors

Different deformation grid densities
and vector standard deviationsBefore and after random 3D deformation

Overfitting of Intensities → Data 
Augmentation 1

 Prevent overfitting of image intensity values:

 Divide each scan by its mean intensity

 Then multiply each scan by a random 
number between 0.5 and 1.5 (different in 
each training iteration)

Overfitting of Distortion Artifacts →
Cropping

 Reliable classification, but network attends to 
distorted regions (probably each scan has 
unique “overfittable” features there)

 Solution: Crop training images

 This reveals the next “overfitting problem”

Goals

 q-Space deep learning [1,2]:

 Prediction of tissue properties directly from q-space data

 Usually voxel-wise

 Here:

 AD/healthy label for entire scan (not voxel-wise)

 ConvNet with global prediction

 Weakly-supervised learning: voxel-wise reasons for global decision

Data [9,10]

 47 AD patients, 58 healthy controls, 5-fold cross-validation

 One b=0 image (averaged over 3 repetitions), 45 diffusion directions 
(b=1200s/mm²)

 Single-shot SE-EPI, TR=6638ms, TE=73ms, voxels 
1.72mm×1.72mm×2.5mm, matrix 128×128, 48 axial slices, 
motion/distortion-corrected using ExploreDTI [11]

Network and Training

 3D ConvNet: C128-P-C256-P-C512-GP-FC2000-FC1

 Cn – 3D convolutional layer with n 3×3×3 filters

 P – 3D 2×2×2 max-pooling

 GP – 3D global pooling

 FCn – fully-connected layer with n neurons

 Hidden layers: ReLU nonlinearity, output: sigmoid

 Binary cross-entropy loss (target: AD/healthy label), Adam optimizer [15], 
learning rate 2·10–5

“Over”fitting of Macrostructure & Open Questions

 Network attends to ventricles (enlarged in AD, easy macrostructural features)
instead of q-space (microstructural features)

 This is further supported by the fact
that just the b=0 image yields good results

 Open question: smaller receptive fields to use only q-space information, but for 
global prediction

Trained and tested on cropped image Trained on cropped, tested on full image

Good Classification, Relevant Brain Regions

Cross-validation
ROC,
AUC=0.92

CAM attends to
AD-relevant

brain regions


