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Synopsis

Machine learning strongly enhances diffusion MRI in terms of acquisition speed and quality of results. Different machine learning tasks
are applicable in different situations: labels for training might be available only for healthy data or only for common but not rare
diseases; training labels might be available voxel-wise, or only scan-wise. This leads to various tasks beyond supervised learning. Here we
examine whether it is possible to perform accurate voxel-wise MS lesion detection if only scan-wise training labels are used. We use
negative-unlabeled learning (an equivalent of positive-unlabeled learning) and achieve an AUC of 0.77.

Introduction

Diffusion MRI provides valuable information about microstructural tissue properties. The classical processing pipeline uses physical/mathematical
representations that are suboptimally simplistic (discard information) and rely on unstable fitting that requires long scan times. Recent methods
based on machine learning circumvent these drawbacks. They do not rely on unstable fitting"%>4> and extract features from diffusion-space (g-
space) data in an optimized (rather than handcrafted) way'*°. Such methods exist for different situations/tasks: To predict voxel-wise
microstructural properties (such as disease effects) in test data when training data with voxel-wise labels are available’; to detect voxel-wise
“novelty” (e.g. disease effects) in test data when only “normal”-labeled (e.g. healthy) training data are available?3%; to predict scan-wise properties
(e.g. disease) in test data when training data with scan-wise labels are available®; to get fine-grained (voxel-wise) predictions from coarse-grained
(scan-wise) training labels®.The latter corresponds to different machine-learning tasks, depending on whether the information is used that (a)
voxels belonging to one scan can be grouped into a “bag” of voxels, (b) all voxels from healthy-control scans are healthy, (c) which features indicate
disease may depend on context (features in other voxels). Using (a,c) but not (b) corresponds to weakly-supervised learning, e.g. class-activation
maps . Using (a,b) corresponds to multiple-instance learning. Using (b) but instead of (a,c) grouping voxels into only two “bags” based on their scan-
label is negative-unlabeled learning. Here we use the latter to detect multiple-sclerosis (MS) lesions without using voxel-wise training labels. Figure 1
shows an overview of methods.

Methods

Data: 94 MS patients and 26 healthy controls, each with six b=0 images and 40 diffusion-weighted images (6+40 “channels”), bmax=1200s/mm?, SE-
EPI, voxel size 1.8mmx1.8mmx2.4mm, matrix 128x128, 57 slices, TE=94.5ms, TR=16s, motion/distortion-corrected®. Human raters marked MS
lesions. To facilitate neural network training, we perform so-called feature scaling by dividing each channel by the corresponding channel mean
taken over all scans. To prevent overfitting on intensity values, we also divide each scan by its mean intensity, and multiply it by a random scalar
between 0.8 and 1.2 during each training epoch.

Negative-Unlabeled Learning: We examine whether it is possible to perform accurate voxel-wise MS lesion detection if only scan-wise training
labels are used. We treat every voxel as a sample, with its features being the g-space measurements. We distinguish a set of negative samples (all
voxels from healthy controls) and a set of unlabeled samples (patient scans consisting of lesions and healthy voxels without labels). Using such
training data is called negative-unlabeled learning’, or equivalently (by renaming the classes) positive-unlabeled learning. When labeling the
unlabeled set entirely as positive (hence introducing some “label-noise”) and optimizing the area under the ROC curve (AUC) is equivalent to
supervised learning with AUC optimization®. Here we optimize mean-squared-error instead of AUC, which usually yields similar results. We expect a
prediction around 1 for lesions and around 0.78 (due to class imbalance and neural networks averaging out label-noise) for healthy voxels.

Training: We used a convolutional network: four layers with 128, 256, 512, and 1 filter, respectively, all filter sizes 1x1x1, ReLU, mean-squared-error
loss (and quality evaluation) only on segmented®'? brain voxels. We used 60% of scans for training, 20% for early stopping, 20% for testing.

Results & Discussion

Figure 2 shows output maps from the test set together with corresponding histograms for novelty detection®3, negative-unlabeled learning, and
voxel-wise supervised learning’. As expected, supervised learning’ yields best AUC (0.91) across voxels of all test scans due to using the largest
amount of information for training (correct labels for all training voxels). Negative-unlabeled learning yields overall good AUC (0.77). It uses more
information (distribution of unlabeled positives) than novelty detection, but surprisingly is outperformed by it (AUC=0.89). One might suspect that
“label-noise” incites negative-unlabeled learning to become sensitive to subtle MS features of normal-appearing white matter in patients, causing
false-positives (in terms of lesion labels). However, high predictions also reach far into grey matter. Non-deep learning can be better for certain
data, but since deep g-space novelty detection outperforms* its non-deep counterpart, the deep nature of negative-unlabeled learning is unlikely to
be the issue in this case. We were not able to tune class-activation maps to achieve good AUC. Their cost function is similar to negative-unlabeled
learning, but the difference between them appears to influence results considerably. For all these reasons we conclude that more research on
these families of methods is necessary.
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Figure 1: Summary of g-space machine learning methods.
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Figure 2: Outputs for all three methods. Lesions are well recognized in the patient scan (first row) by all methods. As expected, supervised learning
yields best AUC (shown for this patient) due to using the largest amount of information for training. Surprisingly, novelty detection yields better
AUC than negative-unlabeled learning, despite using less information. In the healthy-control scan (second row), all methods mistake a small
anterior distortion artifact (with likely incorrect g-space features) for a lesion, but otherwise assign low scores throughout the entire healthy-control
scan. The corresponding histograms (third row) confirm quite good separability of lesions from healthy voxels.
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