Phillip Swazinna’

Negative-Unlabeled Learning for Diffusion MRI

Vladimir Golkov! llona Lipp?

3Department of Neurology and Psychiatry, Sapienza University of Rome, Italy

Eleonora Sgarlata®?

Valentina Tomassini®*
1Computer Vision & Artificial Intelligence, Department of Informatics, Technical University of Munich, Germany

Derek K. Jones?
2CUBRIC, Cardiff University, United Kingdom

Daniel Crem:

ers’

CARDIFF

UNIVERSITY

Tim

PRIFYSGOL

CFRDY®

“Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, United Kingdom

golkov@cs.tum.edu

Technische Universitat Minchen

. Fitting of Analytic Machine learning
OverVIeW Of M eth Od S handcrafted computation of Voxel-wise Voxel-wise Voxel-wise Scan-wise Weakly- Multiple-instance|Novelty detection Negative-
H H representation handcrafted supervised supervised semi-supervised supervised supervised learning [4,5,6] unlabeled
for D |foS on M RI (DTI, DKI, metrics learning learning learning learning learning [hypothetical learning
NODDI, ...) [1] (of handcrafted (of tissue [hypothetical [3] [3] method] [proposed]
metrics) properties) method]
[2] [2]
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(@) Voxels from one scan belong together N/A v
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qg-Space deep learning [2,3,4,5,6]: Prediction of tissue
properties directly from g-space measurements
Every voxel is a sample

= Features are g-space measurements
Only negative (healthy) and unlabeled samples are given

= i.e. negative-unlabeled learning [8]
No positive (multiple sclerosis) labels are given

= i.e. no knowledge about disease is required
Goal: distinguish negative and positive samples
Treating unlabeled samples as positive (which
introduces “label noise”) is (for certain cost functions) a
good method for netagive-unlabeled learning
[Zhung&Lee]

= We use a simpler cost function that yields similar

results

94 multiple sclerosis patients, 26 healthy controls
Six b=0 images, 40 diffusion directions
(brmax=1200s/mm2)

SE-EPI, TR=16s, TE=94.5ms, voxel size
1.8mmx1.8mmx2.4mm, matrix 128x128, 57 axial
slices, motion/distortion-corrected [9]

Neural Network

Feature scaling: divide each channel by its mean taken
over all scans

To prevent overfitting of intensity values: divide each
scan by its mean and multiply with random scalar
between 0.8 and 1.2 in every epoch

3D ConvNet: RelU, 128,256,512,1 filters 1x1x1, Adam

Novelty detection
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= Deep learning for diffusion MRI:
= data-driven: diagnosis directly from
raw g-space data

= many advantages: ultra-short
scans, optimal usage of information,

* applicable in various situations:
coarse or missing labels, unknown
disease effects, ...

= As expected, supervised q-Space Deep
Learning yields best AUC

= Negative-unlabeled learning yields good
AUC (0.77) but is surprisingly
outperformed by novelty detection (0.89)

= More research is necessary

ISMRM 2019, Montréal, Canada

. Hansen et al.: “Fast imaging of mean, axial and
radial diffusion kurtosis”, Neurolmage 2016

. Golkov et al.: “q-Space Deep Learning: Twelve-
Fold Shorter and Model-Free Diffusion MRI
Scans”, IEEE TMI 2016

. Golkov et al.: “q-Space Deep Learning for

Alzheimer’s Disease Diagnosis: Global Prediction

and Weakly Supervised Localization”, ISMRM 2018

Golkov et al.: “Model-Free Novelty-Based Diffusion

MRI”, ISBI 2016

. Golkov et al.: “g-Space Novelty Detection in Short
Diffusion MRI Scans of Multiple Sclerosis”, ISMRM
2018

. Vasilev et al.: “g-Space Novelty Detection with

Variational Autoencoders”, arXiv 2018

Zhang & Lee: “Learning Classifiers without

Negative Examples: A Reduction Approach”,

ICDIM 2008

. Niu: “Recent Advances on Positive Unlabeled (PU)
Learning”, IBISML 2017

. Klein et al.: “elastix: A toolbox for intensity-based
medical image registration”, IEEE TMI 2010

N

w

e

o

o

N

®

©



