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Data

 94 multiple sclerosis patients, 26 healthy controls

 Six b=0 images, 40 diffusion directions 
(bmax=1200s/mm²)

 SE-EPI, TR=16s, TE=94.5ms, voxel size 
1.8mm×1.8mm×2.4mm, matrix 128×128, 57 axial 
slices, motion/distortion-corrected [9]

Neural Network

 Feature scaling: divide each channel by its mean taken 
over all scans

 To prevent overfitting of intensity values: divide each 
scan by its mean and multiply with random scalar 
between 0.8 and 1.2 in every epoch

 3D ConvNet: ReLU, 128,256,512,1 filters 1×1×1, Adam

Setting & Approach

 q-Space deep learning [2,3,4,5,6]: Prediction of tissue 
properties directly from q-space measurements

 Every voxel is a sample

 Features are q-space measurements

 Only negative (healthy) and unlabeled samples are given

 i.e. negative-unlabeled learning [8]

 No positive (multiple sclerosis) labels are given

 i.e. no knowledge about disease is required

 Goal: distinguish negative and positive samples

 Treating unlabeled samples as positive (which 
introduces “label noise”) is (for certain cost functions) a 
good method for netagive-unlabeled learning 
[Zhung&Lee]

 We use a simpler cost function that yields similar 
results

Discussion & Conclusions

 Deep learning for diffusion MRI:

 data-driven: diagnosis directly from 
raw q-space data

 many advantages: ultra-short 
scans, optimal usage of information, 
...

 applicable in various situations: 
coarse or missing labels, unknown 
disease effects, ...

 As expected, supervised q-Space Deep 
Learning yields best AUC

 Negative-unlabeled learning yields good 
AUC (0.77) but is surprisingly 
outperformed by novelty detection (0.89)

 More research is necessary
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Works with few q-space measurements No ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
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Abnormality Abnormality

Location of labels None None
Voxel-wise from 

fitting (which 
requires none)

Voxel-wise Voxel-wise Scan-wise Scan-wise Scan-wise
Any

(only normal)
Any

(only normal)

Location of prediction Voxel-wise Voxel-wise Voxel-wise Voxel-wise Voxel-wise Scan-wise
Voxel-wise clues

for global prediction
Voxel-wise Voxel-wise Voxel-wise

Usage of unlabeled data during training No No No No ✔ No No No Usually no ✔

Used 
knowledge

(a) Voxels from one scan belong together N/A N/A N/A N/A N/A ✔ ✔ ✔
(b) All voxels from healthy-control scan are 
healthy

N/A N/A N/A ✔ N/A ✔ ✔ ✔ ✔

(c) Disease clues may depend on context 
(other voxels)

N/A N/A N/A N/A N/A ✔ ✔


